If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2+3Y-115
We move all terms to the left:
-(4Y^2+3Y-115)=0
We get rid of parentheses
-4Y^2-3Y+115=0
a = -4; b = -3; c = +115;
Δ = b2-4ac
Δ = -32-4·(-4)·115
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-43}{2*-4}=\frac{-40}{-8} =+5 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+43}{2*-4}=\frac{46}{-8} =-5+3/4 $
| 13x-9=12x | | 3.25x^2=16 | | 8+3x-2x=-18 | | -6v+2(v-5)=26 | | m÷-3.2=15 | | (50-x)*5.5=(50+x)*1.36 | | 1=-1/2(4)+x | | (5.5/1.36)=(50+x)/(50-x) | | 5x+(3x-1)=4x(x-1) | | 8w+5(w+4)=7 | | 1(-)x=3 | | 4x-7(x+3)=(-36) | | 4(u-4)+6u=24 | | 8x=36=5x=60 | | 4m=8.2 | | 12-•5h=18-2h | | 5/4=)r+3/2-1/2r | | 6(5g+2)=31g | | z^2−3z=-3 | | 8x-2+9-7x=180 | | x^2−3x=-3 | | 4=70-x | | x2−3x=-3 | | x2−3x+3=0 | | -3(5p-1)-2(1+3p)=1-6p-4 | | 5(5-1)=2(r-4)-6 | | 3=20+x | | 4^7w=24 | | 4x+13+9x-27=180 | | X-4/8+x+1/5=9/8 | | -5w+12w+9=42 | | -7x-3+4x=124 |